Tin Filter

Filtering out unnecessary photons for powerful low-dose scanning

Achieve an optimized spectrum for dose efficiency with the Tin Filter by filtering out unnecessary photons. This delivers powerful low-dose scanning at the level of conventional X-ray examinations.

The Tin Filter cuts out lower energies to reduce dose and optimize image quality at the interface between soft tissue and air. This has direct benefits in lung and colon imaging, for example. Clinical experience also shows that Tin Filter technology reduces beam hardening artifacts and improves image quality in bony structures, making it also extremely useful in orthopedic examination.

  • Optimize scans for early detection and vulnerable patients
  • Provide high diagnostic confidence in lung scans1
  • Enhance sensitive scans, e.g., for sinuses2 and pediatrics
  • Improve spectral separation in Dual Energy scans3


Physics background

Illustration of 70 kVp and 120 kVp spectra without the use of a Tin Filter, and 100 kVp and 150 kVp spectra with spectral shaping by tin (Sn) filtration (Sn100 kV and Sn150 kV, respectively). The Tin Filter reduces radiation dose by blocking low-energy X-ray photons. (Figure 1)

Comparison of image noise at the same dose (CTDIvol) for various patient diameters. Starting from approximately 20 cm, spectra with tin filtration are more dose efficient than traditional spectra. (Figure 2)

1Gordic S, et al. Utralow-Dose Chest Computed Tomography for Pulmonary Nodule Detection. Invest Radiol. 2014 Jul; 49(7):465–73.

2Lell MM, et al. Imaging the Parasinus Region with a Third-Generation Dual-Source CT and the Effect of Tin Filtration on Image Quality and Radiation Dose. AJNR Am J Neuroradiol. 2015 Jul; 36(7):1225–30.

3Hardie AD, et al. Application of an Advanced Image-Based Virtual Monoenergetic Reconstruction of Dual Source Dual-Energy CT Data at Low keV Increases Image Quality for Routine Pancreas Imaging. J Comput Assist Tomogr. 2015 Sep-Oct; 39(5):716–20. For international use only. Do not distribute in the U.S.